134 research outputs found

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    A Package of Momentum and Heat Transfer Coefficients for the Stable Surface Layer Extended by New Coefficients over Sea Ice

    Get PDF
    ingredients of numerical weather prediction and climatemodels. They are needed for the calculation of turbulent fluxes in the surface layer and often rely on the Monin–Obukhov similarity theory requiring universal stability functions. The problem of a derivation of transfer coefficients based on different stability functions has been considered by many researchers over the years but it remains to this day. In this work, dedicated to the memory of S.S. Zilitinkevich, we also address this task, and obtain transfer coefficients from three pairs of theoretically derived stability functions suggested by Zilitinkevich and co-authors for stable conditios. Additionally, we construct non-iterative parametrizations of these transfer coefficients based on earlier work. Results are compared with state-of-the-art coefficients for land, ocean, and sea ice. The combined parametrizations form a package in a universal framework relying on a semi-analytical solution of the Monin-Obukhov similarity theory equations. A comparison with data of the Surface Heat Budget of the Arctic Ocean campaign (SHEBA) over sea ice reveals large differences between the coefficients for land conditions and the measurements over sea ice. However, two schemes of Zilitinkevich and co-authors show, after slight modification, good agreement with SHEBA although they had not been especially developed for sea ice. One pair of the modified transfer coefficients is superior and is compatible to earlier SHEBA-based parametrizations. Finally, an algorithm for practical use of all transfer coefficients in climate models is given

    On a Solution of the Closure Problem for Dry Convective Boundary Layer Turbulence and Beyond

    Get PDF
    We consider the closure problem of representing the higher-order moments (HOMs) in terms of lower- order moments, a central feature in turbulence modeling based on the Reynolds-averaged Navier–Stokes (RANS) approach. Our focus is on models suited for the description of asymmetric, nonlocal, and semiorganized turbulence in the dry atmospheric convective boundary layer (CBL). We establish a multivariate probability density function (PDF) describ- ing populations of plumes that are embedded in a sea of weaker randomly spaced eddies, and apply an assumed delta-PDF approximation. The main content of this approach consists of capturing the bulk properties of the PDF. We solve the clo- sure problem analytically for all relevant HOMs involving velocity components and temperature and establish a hierarchy of new non-Gaussian turbulence closure models of different content and complexity ranging from analytical to semianalyti- cal. All HOMs in the hierarchy have a universal and simple functional form. They refine the widely used Millionshchikov closure hypothesis and generalize the famous quadratic skewness–kurtosis relationship to higher order. We examine the performance of the new closures by comparison with measurement, LES, and DNS data and derive empirical constants for semianalytical models, which are best for practical applications. We show that the new models have a good skill in predict- ing the HOMs for atmospheric CBL. Our closures can be implemented in second-, third-, and fourth-order RANS turbu- lence closure models of bi-, tri-, and four-variate levels of complexity. Finally, several possible generalizations of our approach are discussed

    On a solution of the closure problem for atmospheric convective boundary-layer turbulence

    Get PDF
    К Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ замыкания для Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ атмосфСрного ΠΏΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ слоя. Гряник Π’. М. ΠΈ Π₯Π°Ρ€Ρ‚ΠΌΠ°Π½Π½ Π™. Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ Ρ„ΠΈΠ·ΠΈΠΊΠΈ атмосфСры ΠΈΠΌ. А.М. ΠžΠ±ΡƒΡ…ΠΎΠ²Π° РАН, Москва, Россия Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany МодСли замыкания ΠΈΠ³Ρ€Π°ΡŽΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ турбулСнтности ΠΈ Π΅Ρ‘ прилоТСниях. Они ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² модСлях ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π°, ΠΎΠ±Ρ‰Π΅ΠΉ циркуляции, ΠΏΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΡ€ΠΈΠ·Π΅ΠΌΠ½ΠΎΠ³ΠΎ слоСв атмосфСры ΠΈ ΠΎΠΊΠ΅Π°Π½Π°. НаиболСС популярны, ΠΈΠ·-Π·Π° своСй простоты, ΠΎΠ΄Π½ΠΎ-Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ ΠΈ Π΄Π²ΡƒΡ…-Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ (ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅) замыкания. Одна ΠΈΠ· ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠžΠ±ΡƒΡ…ΠΎΠ²Ρ‹ΠΌ Π² Π΅Π³ΠΎ Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚ΠΎΠΉ сСйчас Ρ€Π°Π±ΠΎΡ‚Π΅, Π³Π΄Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π» ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π·Π°ΠΊΠΎΠ½ пяти Ρ‚Ρ€Π΅Ρ‚Π΅ΠΉ для спСктра ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ турбулСнтности. Π’ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Π² атмосфСрС ΠΈ ΠΎΠΊΠ΅Π°Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ однородная ΠΈ изотропная Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠ°ΡˆΡ‚Π°Π±Π°Ρ… Π² Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΌ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅. Π’ Π΄ΠΎΠΊΠ»Π°Π΄Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° замыкания рассматриваСтся для сухого ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ слоя Π½Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ инвСрсиСй. Π’ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ Π² слоС связано с вихрями ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠ² Π²Π±Π»ΠΈΠ·ΠΈ повСрхности ΠΈ Π² Π·ΠΎΠ½Π΅ вовлСчСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ с ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ структурами - плюмами - ΠΏΡ€ΠΎΠ½ΠΈΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ всю Ρ‚ΠΎΠ»Ρ‰Ρƒ погранслоя. Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ замыкания ΠΏΠ»ΠΎΡ…ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² этих условиях: 1) ΠΏΠΎΡ‚ΠΎΠΊΠΈ Ρ‚Π΅ΠΏΠ»Π°, кинСтичСской ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргий ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΡΡ‚Π°Ρ€ΡˆΠ΅Π³ΠΎ порядка Π½Π΅ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌΠΈ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ, 2) Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠœΠΈΠ»Π»ΠΈΠΎΠ½Ρ‰ΠΈΠΊΠΎΠ²Π° ΠΎ гауссовости ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡ‚ Π΄Π°Π½Π½Ρ‹ΠΌ наблюдСний ΠΈ числСнного модСлирования, 3) ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ диссипации энСргии ΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ‚Π΅ΠΏΠ»Π° (ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΡ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ²) Π½Π΅ описываСтся Π³ΠΈΠΏΠΎΡ‚Π΅Π·ΠΎΠΉ Π ΠΎΡ‚Ρ‚Π°-Монина ΠΎΠ± ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ рСлаксации. Главная ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π° Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ слабом ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ распрСдСлСния Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΉ скорости ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΡ‚ гауссовой Π½Π΅ выполняСтся. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡΡΠ½ΠΈΡ‚ΡŒ ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ, ΠΌΡ‹ рассматриваСм ΡƒΠΏΡ€ΠΎΡ‰Ρ‘Π½Π½ΡƒΡŽ модСль ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ турбулСнтности, приняв Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ Ρ‡Ρ‚ΠΎ Π½Π΅-Π³Π°ΡƒΡΡΠΎΠ²ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ распрСдСлСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описана Π² Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΌ Delta-PDF ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡŽ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ распрСдСлСния суммой Π”Π΅Π»Ρ‚Π°-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Оно Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ приспособлСно для описания влияния ансамблСй ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… структур. ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ Π½ΠΎΠ²ΠΎ ΠΈ использовалось Ρ€Π°Π½Π΅Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… [1]. Π“Π»Π°Π²Π½ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ состоит Π²ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ распрСдСлСния Π²ΠΊΠ»Π°Π΄Π° Π² ΠΎΡ‚ популяций Π²ΠΈΡ…Ρ€Π΅ΠΉ ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠ°ΡˆΡ‚Π°Π±ΠΎΠ², ΠΏΠΎΠΌΠΈΠΌΠΎ Π²ΠΊΠ»Π°Π΄Π° ΠΎΡ‚ ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… структур. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π½Π΅Π΅ Π² [1] Π°Π½Π°Π»ΠΈΠ· проводился асимптотичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ, новая ΠΆΠ΅ модСль Ρ€Π΅ΡˆΠ΅Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎ. ВсС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… порядков Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌΡ‹Π΅, срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… содСрТится Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка - коэффициСнт коррСляции ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ скорости ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ явныС аналитичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ для Π½Π΅-Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, Ρ‚Π΅ΠΏΠ»Π°, кинСтичСской ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ‡ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргии. Π’ частном случаС ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка Π½ΠΎΠ²Ρ‹Π΅ замыкания ΠΎΠ±ΠΎΠ±Ρ‰Π°ΡŽΡ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠœΠΈΠ»Π»ΠΈΠΎΠ½Ρ‰ΠΈΠΊΠΎΠ²Π° Π½Π° случай сильно ассимСтричной турбулСнтности. ВСстированиС Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠΉ Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… самолётных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ (ARTIST), LES ΠΈ DNS ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠ΅Π΅ согласиС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ ΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ. Π’ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… случаях Π½ΠΎΠ²Ρ‹Π΅ замыкания ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π² [1], ΠΈ ΡƒΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ Π² [2-4]. [1] Gryanik V.M. and J. Hartmann, 2002: J. Atmos. Sci., 59, 2729; Gryanik, V.M., J. Hartmann, S. Raasch and M. SchrΓΆter, 2005: J. Atmos. Sci., 62, 2632. [2] Kupka F. and F. Robinson 2007: Mon. Not. Roy. Astron. Soc. 374, 305, 79. [3] Lenschow, D.H., M. Lothon, S.D. Mayor, P.P. Sullivan and G. Canut, 2011: Boundary-Layer Meteorol. 143, 107. [4] Waggy S., A. Hsieh and S. Biringen, 2016: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091929.2016.1196202

    A package of momentum and heat transfer coefficientsfor the stable atmospheric surface layer

    Get PDF
    The polar atmospheric surface layer is often stably stratified, which strongly influences turbulent transport processes between the atmosphere and sea ice/ocean. Transport is usually parametrized applying Monin Obukhov Similarity Theory (MOST) which delivers transfer coefficients as a function of stability parameters (see below). In a series of papers (Gryanik and LΓΌpkes, 2018; Gryanik et al., 2020,2021; Gryanik and LΓΌpkes, 2022) it has been shown that differences between existing parametrizations are large, especially for strong stability. One reason is that they are based on different data sets, for which the origin of differences is still unclear. In this situation Gryanik et al. (2021) as well as Gryanik and LΓΌpkes (2022) proposed a numerically efficient method, which can be used for most of the existing data sets and their specific stability dependences. A package of parametrization resulted that is suitable for its application in weather prediction and climate models. Especially, calculation of fluxes over sea ice were improved. Combined with latest parametrizations of surface roughness it has a large impact on large scale fields as shown recently by Schneider et al. (2021) who applied some members of the package

    Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π±Π°Ρ€ΠΎΠΊΠ»ΠΈΠ½Π½Ρ‹Ρ… Π²ΠΈΡ…Ρ€Π΅ΠΉ с Π½ΡƒΠ»Π΅Π²ΠΎΠΉ суммарной ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ (Ρ…Π΅Ρ‚ΠΎΠ½ΠΎΠ²)

    Get PDF
    ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚, посвящСнных ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ свойств Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π² устойчиво стратифицированной быстро Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰Π΅ΠΉΡΡ Тидкости ΠΈ описываСмых ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ вихря Π² квазигСострофичСском ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ. ОсновноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ вихрям с Π½ΡƒΠ»Π΅Π²ΠΎΠΉ суммарной циркуляциСй β€” Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ Ρ…Π΅Ρ‚ΠΎΠ½Π°ΠΌ. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ самодвиТСния дискрСтных Ρ…Π΅Ρ‚ΠΎΠ½ΠΎΠ², устойчивости Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ распрСдСлСнного Ρ…Π΅Ρ‚ΠΎΠ½Π°, взаимодСйствия Π΄Π²ΡƒΡ… Ρ…Π΅Ρ‚ΠΎΠ½ΠΎΠ² ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎ Ρ‚Ρ€Π΅Ρ… ΠΈ Π±ΠΎΠ»Π΅Π΅ дискрСтных вихрях Ρ…Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ структуры. Π”Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ возникновСния хаотичСских Ρ€Π΅ΠΆΠΈΠΌΠΎΠ². ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ примСнимости Ρ…Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ пСрспСктивыСС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ, Π² частности, β€” для Π°Π½Π°Π»ΠΈΠ·Π° динамичСской стадии развития Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΈ Π² ΠΎΠΊΠ΅Π°Π½Π΅

    Parametrization of Turbulent Fluxes over Leads in Sea Ice in a Non-Eddy-Resolving Small-Scale Atmosphere Model

    Get PDF
    Leads (open-water channels in sea ice) play an important role for surface-atmosphere interactions in the polar regions. Due to large temperature differences between the surface of leads and the near-surface atmosphere, strong turbulent convective plumes are generated with a large impact on the atmospheric boundary layer (ABL). Here, we focus on the effect of lead width on those processes, by means of numerical modeling and turbulence parametrization. We use a microscale atmosphere model in a 2D version resolving the entire convective plume with grid sizes in the range of L/5 where L is the lead width. For the sub-grid scale turbulence, we developed a modified version of an already existing nonlocal parametrization of the lead-generated sensible heat flux including L as parameter. All our simulations represent measured springtime conditions with a neutrally stratified ABL capped by a strong temperature inversion at 300 m height, where the initial temperature difference between the lead surface and the near-surface atmosphere amounts to 20 K. We found that our simulation results obtained with the new approach agree very well with time-averaged results of a large eddy simulation (LES) model for variable lead widths with L β‰₯ 1 km and different upstream wind speeds. This is a considerable improvement since results obtained with the previous nonlocal approach clearly disagree with the LES results for leads wider than 2 km. In conclusion, considering L as parameter in a nonlocal turbulence parametrization seems to be necessary to study the effect of leads on the polar ABL in non-eddy-resolving small-scale atmosphere models

    Parameterization of drag coefficients over polar sea ice for climate models

    Get PDF
    A parameterization of drag coefficients has been developed in recent years that accounts for the impact of edges at ice floes, leads, and melt ponds on momentum transport. Melt ponds are a common feature in the inner Arctic during summer while drifting ice floes and their edges influence the surface roughness especially in the marginal sea ice zones during all seasons. Governing parameters in the parameterization that can be easily applied to climate models are the sea ice concentration and aspect ratio h/D where h is the ice freeboard and D is the characteristic length of floes and ponds/leads. When these parameters are not available from a sea ice model, the aspect ratios can also be parameterized as a function of the sea ice concentration so that the new schemes can also be used in stand-alone atmospheric models using observed sea ice concentration. The parameterization is evaluated for idealized meteorological forcing and prescribed sea ice and melt pond concentration in the Siberian Arctic and in parts of the Central Arctic. The required sea ice data are available from remote sensing. The distributions of drag coefficients obtained from traditional parameterizations and from the new one show large differences in this test scenario especially in the region south of 80Β°N
    • …
    corecore